EAGLE Monitors by
Collecting Facts and Generating Obligations

Howard Barringer*!, Allen Goldberg?, Klaus Havelund? and Koushik Sen**>

! University of Manchester, England
2 Kestrel Technology, NASA Ames Research Center, USA
3 University of lllinois, Urbana Champaign, USA

Abstract. We present a rule-based framework, called EAGLE, that has been
shown to be capable of defining and implementing a range of finite trace
monitoring logics, including future and past time temporal logic, -extended
regular expressions, real-time and metric temporal logics, interval logics, forms
of quantified temporal logics, and so on. A monitor for an EAGLE formula
checks if a finite trace of states satisfies the given formula. We present, in
details, an algorithm for the synthesis of monitors for EAGLE. The algorithm
is implemented as a Java application and involves novel techniques for rule
definition, manipulation and execution. Monitoring is achieved on a state-by-state
basis avoiding any need to store the input trace of states. Our initial experiments
have been successful as EAGLE detected a previously unknown bug while testing
a planetary rover controller.

1 Introduction
Formal methods have been investigated for several decades in an effort to improve
software quality. However, in the ambitious goal of proving correctness of the
system/program, many of these technologies suffer from scalability problems. A
complementary approach is to make incremental improvements to traditional and
practical testing approaches. Runtime verification, or runtime monitoring as it is also
called, is such a technique, where a program’s execution is monitored by an oracle,
which automatically determines whether the run is correct or not. The oracle takes as
input a specification of what constitutes correct behavior, and checks that its second
input, the execution trace, satisfies it. Runtime verification cannot only be used during
testing, but can also be applied during operation to survey the health of an application,
- and actions associated with individual properties in the specification can be triggered
when the properties get violated. '
Several runtime verification systems have been developed, of which some were
presented at three recent international workshops on runtime verification [1]. The
different logics offer different capabilities, and the question obviously becomes: is there
a unifying logic in which all these logics can be modeled, providing the union of these
useful capabilities, and which still is theoretically simple and succinct? We propose a

* This author is most grateful to RIACS/USRA. and to the UK’s. EPSRC under grant

GR/S40435/01 for the partial support provided to conduct this research.
** This author is grateful for the support received from RIACS to undertake this research while
participating in the Summer Student Research Program at the NASA Ames Research Center.

very powerful and succinct temporal finite trace monitoring logic, named EAGLE, as
a solution. The logic was first presented in [5]. In this paper we detail the algorithm,
its implementation, and give complexity results. We furthermore describe a case study
where EAGLE has been applied to test one of NASA’s planetary rover controllers.

An EAGLE specification consists of a set of rule definitions, defining new temporal
operators. Rules are parameterized with formulas and data, and have maximal or
minimal fix-point semantics depending on whether a safety property or a liveness
property is being defined. Only three temporal primitives are provided: next-time,
previous-time, and concatenation. EAGLE has in particular been significantly influenced
by earlier work of Barringer et al., see for example [3], on the executable temporal
logic METATEM. EAGLE is very expressive, and the following kinds of logics can
for example easily be built on top of EAGLE, as illustrated in [5]: future and past
time logics, extended LTL and the semantically equivalent fix-point temporal calculus,
extended regular expressions, data constrained and statistical logics, real-time logics as
a special case of data constraints, and context free languages. The logic also supports the
mix of formulas with state machines, and probabilistic logics. In [4] we describe how
pure propositional future and past time LTL is embedded in EAGLE, and the complexity
of monitoring in that restricted case.

Linear temporal logic (LTL) [19] forms the basis of several runtime verification
systems. The tool Temporal Rover [6,7] supports a fixed future and past time LTL,
with the possibility of specifying real-time and data constraints as annotations on the
temporal operators. The algorithm is based on alternating automata, as is the wotk in
(9, 81, which supports a statistical logic. The MAC logic [18] is a form of past-time LTL
with operators inspired by interval logics and which models real-time via explicit clock
variables. In [20] is described a logic based on extended regular expressions. The logic
described in [15] is a sophisticated interval logic. Our own previous work includes
the development of several algorithms, such as generating dynamic programming
algorithms for past time logic [12], using a rewriting system for monitoring future-time
logic [11], or generating Biichi automata inspired algorithms adapted to finite trace
LTL [10]. Parallel work [17] also uses recursive equations to implement a real-time
logic. However, we go beyond by providing a language of recursive equations to the
user, by supporting a mixture of future time and past time operators, and by providing
parametrization to reason about data, of which we regard real-time as just a special case.

The paper is organized as follows. In Section 2, EAGLE is introduced through an
example, and its syntax and semantics is presented. Section 3 presents the algorithm for
monitoring EAGLE formulas on finite traces. Section 4 describes the implementation
in Java, and a case study where the framework was applied to test a rover controller.
Finally, Section 5 concludes the paper.

2 The EAGLE Logic

The EAGLE logic is designed to support finite trace monitoring, and contains a small
set of powerful operators, which allow one to define new logics on top. EAGLE
essentially supports recursive parameterized equations, with a minimal/maximal fix-
point semantics, together with three temporal operators: next-time, previous-time, and
concatenation. Rules can be parameterized with formulas, supporting the definition of

new temporal operators, and they can be parameterized with values, thus supporting
logics that can reason about data and, as a special case of data, real-time. As atomic
propositions we assume boolean expressions over individual states comprising the finite
trace. In the curtent implementation of the monitoring algorithm for EAGLE, states are
Java objects, and propositions are boolean valued Java expressions.

The logical system is expressively rich; indeed, any linear-time temporal logic,
whose temporal modalities can be recursively defined over the next, past or
concatenation modalities, can be embedded within it. Furthermore, since in effect
we have a limited form of quantification over possibly infinite data sets through the
parameterization, and concatenation, we are strictly more expressive than, say, a linear
temporal fixed point logic (over next and previous). We shall first, in Section 2.1,
introduce the logic through an example. Then, in Section 2.2, we present its syntax
and semantics.

2.1 An Example

We shall llustrate the logic through an example. First, we define some general temporal
operators, using EAGLE’s parameterized rules and the next-time operator. Then we
present some more definitions, illustrating concatenation and how data parameters can
be used in past-time as well as in future-time formulas. -

Defining Basic Temporal Operators Assume that we are interested in monitoring the
behavior of a program, and assume that the result of executing the program is a sequence
of observable states. Each state is time stamped by the program, and the time stamp of
the current state can be obtained by calling the method currentTime(). We shall refer to
this sequence as the execution trace, or just trace for short. Our goal is to state properties
about these traces. Say we want to observe the following relationship between two state
predicates P and Q alang the trace: “Whenever P occurs then Q must occur within
10 seconds”. The property can be written as follows in metric future time LTL {16]:
O(P — O<10Q). The formula contains the two temporal operators [1 (always) and (<,
(eventually within ¢ time units). If we consider the formula OF, for some sub-formula
F, then normally (in temporal logic literature) it satisfies the following equivalence,
where the temporal operator OF stands for next F (meaning ‘in next state F’):

OrF=FAQ(OF)

It can in fact be shown that OF is the maximal solution to the recursive equation
X =FAQOX. A fundamental idea in our logic is to support this kind of recursive
definitions. In EAGLE, the two just discussed temporal operators, OF and O« F, and the
property to be monitored can be defined as in Figure 1. The (IF operator is modelled by
the Always operator, the definition of which directly follows the equation above. The
relative-time temporal operator O, is represented by the EventuallyRel operator,
which itself is defined in terms of the absolute-time EventuallyAbs operator. That
is, the EventuallyAbs operator takes as argument the absolute time within which the
formula given as second argument must be satisfied. It therefore checks that the current
time has not exceeded the absolute time argument. If the property F is not true, the
obligation is “pushed forward” to hold in the next state. The EventuallyRel operator
just adds the current time to its relative time argument and calls EventuallyAbs. We

max Always(Form F) = F AQalways(F)

min EventuallyAbs(float z,Form F) =
currentTime() <t A((~F) — (QEventuallyabs(t,F))

min EventuallyRel(float t,Form F) =
EventuallyAbs(currentTime() +1,F)

mon M = Always(P — EventuallyRel(10,0Q))

Fig. 1. EAGLE definitions

see that real-time is modeled as a floating point number, which is made as parameter
to the rules. This illustrates the general capability of the logic to handle general data
values, real-time being a specific example.

The Always operator is defined as a maximal fix-point operator, while the operators
EventuallyAbs and EventuallyRel are defined as minimal operators. Maximal
rules define safety properties (nothing bad ever happens), while minimal rules define
liveness properties (something good eventually must happen). The difference becomes
important only at the end of the trace analysis (beyond the last state): a maximal rule
just evaluates to true, while a minimal rule evaluates to false. This reflects the intuition
that a safety property is true if it is true on all proper states in the trace, but a liveness
property is true only if the expected events occur, and beyond the end of the trace no
such event can be expected to occur.

Concatenation and More about Data We shall now use these defined operators and
extend our example a bit. Assume the following requirement for sofe concept of task

execution:

“If a start command is given, the task should begin executing within 10
seconds. It begins by issuing an observable begin event and ends by issuing
an observable end event. In between the begin and end events the task should
report errors correctly. That is, if an error occurs, then an error report should
be emitted on that error, identifying the error code. An error report is emitted
precisely once on each kind of occurring error.”

We assume that the states in the trace can be observed through the following boolean
valued functions: start() — task is being requested to begin, begin() — task begins, end 0
— task ends, and the following integer valued functions: error() — non-zero identification
of an occurred error, and report() — non-zero identification of an error reported. Then
the specification can be written as in Figure 2, extending the definitions in Figure 1.
First, note that the use of the concatenation operator Fj - > in the definition of
Execute. It states that the trace can be divided into two parts, one satisfying £1 and-one
satisfying F>. Because of this operator, the Always operator within the ReportErrors
rule does not extend beyond the end(). Note that the begin() proposition cannot
be composed with the ReportErrors() with concatenation since the concatenation
accepts any split of the trace where begin() satisfies the first sub-trace and where

max Task() =
Always(start() — EventuallyRel(10,Execute()))

max Execute() =
(begin() A (OReportErrors()) - end()

max ReportErrors() = _
Always({error() # 0 A —-Reported(error())) — Report{error())) A
Always((report() # 0) — (—Reported(report()) A ExrrorOccurred(report())))

min Report(int errorCode) =
(report() = errorCode) V (OReport(errorCode)

min Reported(int errorCode) =
O(report() = errorCode) V (O Reported(errorCode)

min ErrorOccurred(int errorCode) =
(error() = errorCode) V (O ErrorOccurred(errorCode)

mon M = Task()
Fig. 2. EAGLE definitions continued

ReportErrors() satisfies the other sub-trace, hence missing to enforce error reports
during the first sub-trace.

The ReportErrors rule itself illustrates the previous operator, (), which is the
mirror of the next operator, (). The formula says: “if there is an error, and it has not
been reported before, then it should be reported in the future. Furthermore, if an error
is reported, it must not have been reported in the past, and it must have occurred”. The
rules Report, Reported and ErrorOccurred each takes as argument an error code,
and checks whether this error code is being reported in the future or in the past, and
whether the error has occurred. For example, Report checks whether there is a report
of the error now, and if not, if there is such a report in the future (starting from the
next state). The sub-formula Report(error()), for example, represents the following
quantified LTL formula: 3k.(k =error() AQ(report() = k)).

2.2 Syntax and Semantics

Syntax The syntax of EAGLE is shown in Figure 3. A specification S consists of a
declaration part D and an observer part O. D comprises zero or more rule definitions

R, and O comprises zero or more monitor definitions M, which specify what is to be .

monitored. Rules and monitors are named (V). Each rule definition R is preceded by
one of the keywords max or min, indicating whether the interpretation is maximal or
minimal. A parameter type can either be Form, representing formulas, or a primitive
type int, long, float, etc.. The body of a rule/monitor is a boolean valued formula of
the syntactic category Form (with meta-variables F, etc.). Any recursive call on a
rule must be strictly guarded by a temporal operator. The propositions of this logic
are boolean expressions over an observer state. Formulas are composed using standard

::= Form | primitive type
= expression | tue | false | =F | AR | VE | F — F |
OFl@FlFI'FZIN(Fb“'aFn)lxi ’

Fig.3. Syntax of EAGLE

S =DO

D .=R*

0 u=M

R = {r_n;agl_rqg}N(Tl X,y Tnxn)=F
M :=monN=F

T

F

propositional logic operators together with a next-state operator (OF), a previous-state
operator ((O F), and a concatenation-operator (F1 -). Rules can be applied and their
arguments must be type correct. That is, an argument of type Form can be any formula,
with the restriction that if the argument is an expression, it must be of boolean type.
An argument of a primitive type must be an expression of that type. Arguments can be
referred to within the rule body (xy).

Semantics The models of our logic are execution traces. An execution trace G is a finite
sequence of program states G = 152 . . .p, where |G| = n is the length of the trace. The
i state 5; of a trace & is denoted by &(i). The term o/ denotes the sub-trace of G from
position i to position j, both positions included. The semantics of the logic is defined
in terms of a satisfaction relation between execution traces and specifications. That is,
given a trace ¢ and a specification D O, satisfaction is defined as follows:

6EDO iff V(monN=F)€0.6,1[=pF

A trace satisfies a specification if the trace, observed from position 1 (the first state),
satisfies each monitored formula. The definition of the satisfaction relation =p C
(Trace x nat) x Form, for a set of rule definitions D, is presented in Figure 4. The
concatenation formula Fy - F> is true if the trace ¢ can be split into two sub-traces
© = G107, such that Fj is true on o}, observed from the current position i, and F is
true on 6,. Note that the first formula F} is not checked on the second trace Gz, and,
similarly, the second formula F, is not checked on the first trace o;. Note also that either
G, or 6, may be an empty sequence. Applying a rule within the trace (positions 1...n)
consists of replacing the call with the right-hand side of the definition, substituting
arguments for formal parameters. At the boundaries (0 and n + 1) a rule application
evaluates to true if and only if it is maximal. :

3 Monitoring Algorithm

In this section, we outline the monitoring algorithm used to determine whether a given
monitoring formula holds for some given input sequence of events. The algorithm is
followed by an example illustrating how it works. On the observer side a local state
is maintained. The atomic propositions are specified with respect to the variables in
this local state. At every event the observer modifies its local state; then evaluates the
monitored formulas on that state and generates a new-set of monitored formulas. At
the end of the trace the values of the monitored formulas are determined. If the value
of a formula is true, the formula is satisfied, otherwise the formula is violated. In what
follows, we will assume null as a special formula that is not equal to any other formula.

o,if=p exp iff 1<i<|o| and evaluate(exp){c(i)) == true

G,i Fp true

0,1 fp false

6,i p ~F iff 0,ifpF

S,iEp IAF, iff o,if=pF ando,ifF=p B

G,il::DF1VF2 iff 6,i=pF org,ikEp B

oiEpFI - F iff ©,if=p F implies 6,il=p F>

o,i=p OF iff i<|olando,i+1f=p F

c,iEp OF iff 1<iando,i~1fpF

o,if=p Fi-F2 iff 3jsti<j<|o]+1andolb iy Fandolilol1fp R, |

if 1 <i< o] then:
C,ilEp Flxy v F,...,xm > Fy)
c,ifEp N(Fi,...,F) iff where (N(T1 x1,...,Tmxm)=F) €D
otherwise, if i = 0 or i = |o] + 1 then:
rule N is defined as max in D

Fig. 4. Definition of 6, |=p F for 0 <i < [6| + 1 for some trace 6 = 5157 ...y

First, 2 monitor formula F is transformed to the formula inir{ F,null,null)* by

applying the function init : Form x Form x Form — Form. init’s second argurment is

used to determine termination for a recursive application of inif on a rule - it is the head
formula of a recursive rule application; its third argument denotes the recursion variable
that will replace any embedded recursive call on the head formula. These two arguments
are null for the initial application of init as it is not yet in the context of a rule. Next,
the transformed formula is monitored against an execution trace by application of eval.
The evaluation of a formula F on a state s = 6(i) in a trace © results in an another
formula eval((F,s) with the property that ¢,i |= F if and only if 6,i+ 1 = eval{(F,s).
The definition of the function eval : Form x State — Form uses an auxiliary function
update with signature update : Form x State x Form x Formn — Form: update’s role is
to pre-evaluate a formula if it is guarded by the previous operator (0. Formally, update
has the property that o,i = OF iff 0,i+ 1 | update{F,s,null,null). Had there
been no past time modality in EAGLE update would be unnecessary and the identity
0,i = (F iff 0,i+ 1 = F could have been used. The last two arguments of update
have a similar role to those of iniz. At the end (or at the beginning) of a trace, the
function value : Form — {true, false} when applied on F returns true iff 6,|c|+ 1 = F
(or 6,0 |= F) and returns false otherwise. Thus given a sequence of states 5153 .. .5z,
an EAGLE formula F is said to be satisfied by the sequence of states if and only if
value(eval{... eval{eval{init{F,null,null}),s1),s2)...s,)) is true. The functions
init, eval, update and value are the basis of the calculus for our rule-based framework.

3.1 Calculus

The init, eval, update and value functions are defined a priori for all operators except
for the rule application. The definitions of iniz, eval, update and value for rules get
generated based on the definition of rules in the specification. The definitions of init,

4 We use braces {...) in lieu of (...) to help the reader parse deeply nested formulas.

eval, update and value on the different primitive operators are given below.

init{true, Z,0") = true
init(false,Z,b") = false
init{(jexp,Z,b") = jexp
init{Fy op B,2Z,b") = init{ F1,Z,1") op init{F,Z,b")
init{~F,Z,b") = —init{F,Z,b")
init(F, - By, Z,b') = init(Fy,Z,b'Y - init(F3, Z, ¥}

eval{true,s) = true

eval(false, s) = false vaue(e) = e
eval(jexp,s) = value of jexp in s value (false}) =
eval(Fy op F3,s) = eval{Fy,s) op eval{F2,s) value{jexp) =
eval{—F,s) = —eval{F,s) value{(Fy op) = value((Fl) op value{F>)
eval(F,-F,s) = value{—~F) = —value{F)

o
<

ifvalue(F;) = false then eval{F1,5) - F» value{F, -F)

alue{F)) A value(F)
else (eval(Fy,s) - Fo)V eval(Fy,s) '

update{true,s,Z,b') = true
update{false,s, Z,b') =
update{jexp,s,Z,b') =]exp

update{Fy op Fp,5,Z,b") =
update{Fy,s,Z,b") op update(F,,s,Z,b")
update(~F,s,Z,b") = —update(F,s,Z,b")
update(F| - F>,5,Z,b') = update{F1,5,Z,b') - F

In the above definitions, op can be A,V,—. Observe that we never used the last two
arguments of inir and update. In most of the definitions we simply propagate the
function to the subformulas. However, the concatenation operator is handled in a special
way. The eval of a formula F; - F> on a state s first checks if value{F1}) is true or not. If
the value is true then one can non-deterministically split the trace just before the state s.
In that case the evaluation becomes (eval{Fi,s) - F2) V eval{F>,s)) where V expresses
the non-determinism. Otherwise, if the trace cannot be split the evaluation becomes
simply eval((Fl,s)} F>. The function update on the formula F; - F, simply updates the
formula Fy, as F is not effected by the trace that effects Fj. At the end of a trace, that
F, - F, is satisfied means that the remaining empty trace can be split into two empty
traces and they satisfy Fj and F>; hence we get conjunction in value{Fi - F2)).

The functions init, eval, update, and value are defined in a special way for the
operators () and (. For the operator () we introduce the operator Next : Form — Form.
Then we define init, eval, update, and value as follows:

init{ OF,Z,b") = Next(init{(F,Z,b"))
eval(Next(F),s) = update{F,s,null,null})

update (Next(F),s,Z,b") = Next{update{F,s,Z,b'))
F if at the beginning of trace
false if at the end of trace

vl exs(F)) = {

Since the semantics of () is different at the beginning and at the end of a trace, we have
to consider the two cases in the definition of value.

The operator (requires special attention. If a formula F is guarded by a previous
operator then we evaluate F at every event and use the result of this evaluation in the

next state. Thus, the result of evaluating F is required to be stored in some temporary
placeholder so that it can be used in the next state. To allocate a placeholder for a
(operator, we introduce the operator Previous : Form x Form — Form. The second
argument for this operator acts as the placeholder. We define init, eval, update, and

value for ¢ as follows:

init{(O F,Z,b") = Previous(Y, value{Y) where Y = init{F,Z,b")

eval(Previous(F,past),s) = eval{past,s)

update {Previous(F, past),s,Z,b") = Previous(update{F,s,Z,b'), eval{F,s}))
. __ | false if at the beginning of trace

value(Previous(F, past)) = value{past)) if at the end of trace -

Here, in eval, the subformula F' guarded by the previous operator is the eval of the
second argument of Previous, past, that contains the evaluation of F in the previous
state. In update we not only update the first argument £ but also evaluate F and pass
it as the second argument of Previous. Thus in the next state the second argument of
Previous, past, is bound to (O F. The value{(Y) that appears in the definjtion of init is
the value of ¥ at the beginning of the trace. This takes care of the semantics of EAGLE

at the beginning of a trace.
3.2 Monitor Synthesis for Rules

For every rule R we introduce an operator R to replace R in a formula during the
application of init. For example, consider a rule of the form

{max|min} R(Form f},...,Form fm, 71 p1,---, 5w Pn) =B

where fi,...f are arguments of type Form and py, ... p, are arguments of primitive
type. Without loss of generality, in the above rule we assume that all the arguments of
type Form appear first. Such a rule can be written in short as

{max|min} r(Form f,T p) =B

where f and p represents tuples of type Form and T respectively. For such a rule
we introduce an operator R : Form x 7 — Form. Informally, the first argument of R
represents the transformed right hand side of the rule. In what follows, pb.H (b) denotes
a recursive structure where free occurrences of b in H point back to pb.H(b). Formally,
pb.H(b) is a closed form term that denotes a fix-point solution to the equation x = H (x)
and hence pb.H(b) = H(pb.H(b)). The open form H(b) denotes a formula with free
recursion variable b. In structural terms, a solution to x = H(x) can be represented as a
graph structure where the leaves denoted by x points back to the root node of the graph.
Our implementation uses this structural solution.

For the rule {max|min} R(Form f,7, P) = B we synthesize the definitions of init,
eval, update, and value as follows: .

init(R(F,P),R(F,P"),b') =R(¥,P)
init{R(F, P) Z,b") = R(pb.init{B[f — Y|,R(F,P),b),P)
where Y = ini#{F,Z, ") and Z does not match R(F,?)

In the first equation for init, the name of the rule and its arguments of type Form are
the same for both the first and second arguments passed to init. This occurs when init
has been applied to a recursive call of the rule R. So iniz is terminated and R(¥/, P)

is returned. Otherwise, the formal variables f in the formula B (representing the right
hand side of a rule) are substituted by the initialized version of the actual arguments F
to get B[f ~+ Y|. Then this B, with proper substitutions, is initialized. In the inir function
R(F,P) and b are passed as the second and third argument, respectively, to make sure
that if B contains any recursive call to R(F,P) then the first definitional equation of
init applies. We then obtain the recursive structure pb.init{B[f — Y],R(F,P),b). This
structure represents the right hand side or the body of the rule R possibly with recursive
call to R. Note that here the variable b should be a fresh name to avoid possible variable
capturing. Moreover, observe that we do not substitute the formal variables of primitive
type as their values will be available at the time of monitoring. Lines 1 to 6 of the
example in Section 3.3 show this transformation process.

update(R(pb.H(b),P),s,R(pb.H(b), P'),b') =R(V',P)
update{(R(pb.H(b),P),s,Z,b") =
R(pb'.update(H(pb.H(b)),s,R(pb.H (b),P), '), P)
where Z does not match R(pb.H(b),?)

The first equation for update detects when R and pb.H (b) are the same for both the first
and third arguments passed to update; it terminates the application of update in a similar
way to init and R(b', P) is returned. Otherwise, as in the second equation, pb.H(b) is
expanded to H(pb.H (b)). update is applied to H(pb.H (b)) with R(pb.H(b),P) and &'
as the last two arguments; this makes sure that if H(pb.H (b)) contains the subformula
R(pb.H(b),?), the first equation for update applies and update terminates. This process
is exemplified in lines 9 to 13 of the example in Section 3.3.

eval{R(pb.H(b),P),s) = eval {H(pb.H(b))[P — eval{P,s)],s)

Here, pb.H(b) is first expanded to H(pb.H(b)) and then any arguments of primitive
type are evaluated and substituted in the expansion. The function eval is then applied
on the expansion. Note that the result of eval{P,s)), where P is an expression, may
be a partially evaluated expression if expressions referred to by some of the variables
in P are partially evaluated. The expression gets fully evaluated once all the variables
referred to by the expressions are fully evaluated. Steps 1 and 2 of the second example
in Section 3.3 illustrate the partial evaluation.

value(R(B,P)) = false if R is minimal value{R(B,P)) = true if R is maximal
The value of a max rule is true and that of a min rule is false.
Correctness of Evaluation Given the functions init, eval, update and value, as detailed
above, we claim that for a given sequence ¢ = sy .. .5, and an EAGLE formula F
6,1 |=p F iff value(eval{. .. eval{eval{init{F,null, null)F,s1),52) ... sn}).
Insufficient space prohibits inclusion of the proof, or part thereof. However, we illustrate
the evaluation calculus with a small example.

3.3 Examples

We provide two examples to show the workings of the monitor synthesis algorithm.
For the first, we consider the initial transformation of, and then a single application of
evaluation to the transformed formula for, the temporal monitor specified by:

min Ep(Fom f) = fV O Ep(f)

mon M = QEp(q)

10

1 init{(OEp(g),rull,null)

2 = Next(init(Ep(g), null, null}))

3 = Next(Ep(pb.init{(qV O Ep(q)),Ep(q),b)))

4. =Nex(Ep(pb.(qV init(OEp(9),Ep(q),5))))

5 = Next(Ep(pb.(q V Previous(init(Ep(q), Ep(q), b)), value{init(Ep(q), Ep(q), b))))))
6 = Next(Ep(pb.(g V Previous(Ep(b), false))))

init is first applied to the monitor formula QEp(q) together with two null arguments.
It then converts the primitive () operator to the operator Next — line 2. This results in
init being applied to the Ep rule application which yields the new rule form Ep being
applied to the yet to be transformed recursively defined rule body — line 3. By line 5, init
has transformed the primitive () operator to the Previous rule with its two argurnents,
respectively the transformation of the immediate subformula of (), i.e. init applied to
E(q), and then the initial boundary value of that particular transformed subformula.
Note that in both cases the last two arguments of init are instantiated with the initial
recursive call and with the “pointer” to the body. The transformation is completed
by line 6 through init terminating via its first definitional clause. In line 7 below,
eval is now applied to the inir formula of line 1, i.e. eval is applied to the resulting
transformation together with a state s (in which we assume that g is true) — line 8.

7. eval{init{OFp(q),null,null},s)

8. = eval(Next(Ep(pb.(q V Previous(Ep(b), false)))), s)
9. = update(Ep(pb.(qV Previous(Ep(?) false))),s,null,null)
10. = Ep(pd'. update{qV Previous (Ep(pb (gV Previous(Ep(b), false))), false), s,
Ep(pb. (q\/Prewous(Ep(b) false))), &) .
1L = Ep(pb'.(qV update(Previous(Ep(pb.(g v Previous(Ep(b), false))), false), s,
- Ep(pb.(q V Previous(Ep(»), false))), b')))
12. = Ep(pd'.(gV Previous(updare(Ep(pb-(q V Previous (Ep(d), false))), s,

Ep(pb.(g V Previous(Ep(b), false))), '),
eval(Ep(pb.(q V Previous(Ep(b), false))),s))))

13. = Ep(pbd'.(qV Previous(Ep(%'),
T eval((qVPrevxous(Ep(pb (gV Previous(Ep(b), false))), false), s)))))
14 = Ep(pb'.(qV Prevxous(Ep(b’) eval{g,s) V.
eval((Prekus(Ep(pb (g Vv Previous(Ep(b), false))), false) s)))))
15. = Ep(p¥'.(gV Previous(Ep(?'), (true V eval(false, s)))))
16. =E_—(pb’.(qVPrevious(Ep('), true)))

The ‘evaluation of a next time formula in a state reduces, in effect, to its immediate
subformula where any subsequent past time subformulas have been appropriately
updated. Lines 9 to 13 above show how the function update works over the given
subformula. Lines 14 to 16 complete the sub-evaluation which results with the Previous
subformula containing true as the value of Ep{g) for the next application of eval.

Another example Having now seen some detailed working of init and update, we
now illustrate the evaluation of a temporal monitor containing both future and past
temporal operators, together with data values, i.e. the first order linear-time temporal
logic formula, O(x > 0 — Jk((k =x) AO(z > OAy = k))). A specification for this

11

monitor can be presented in EAGLE as follows:

max A(Form f) = f A QA(S)
min Ep(Form £) = f v O Ep(f)
min Ev(int k) = Ep(z > 0Ay =k)
mon M = A(x > 0 — Ev(x))

At the beginning of monitoring the function init is applied to M as follows:

F = init{M,null,null}
= init{A(x > 0 — Ev(x)),null,null}
=A(pb1-((x>0) = '
Ev(pb2 Ep(pbs.((z > 0) A (y = k) V Previous(Ep(b3), false))), x)) A Next(A(b1)))

Given the state sequence {x=0,y=3,z=1},{x=0,y=5,z=2},{x=2,y=2,z=0},
step-by-step monitoring of the above formula on this sequence takes place as follows:

Step 1:s={x=0,y=3,z=1}
Fy = eval{F,s)

=A(pb1.((x>0) = ,
Ev(pb2.Ep(pbs3.((z> 0) A (y = k) V Previous(Ep(bs), (3 = k)))),x)) A Next(A(b,)))

Observe that in the above step the second argument of Previous is partially evaluated as
the value of k is not available. oo

Step2:s={x=0,y=35,z=2}
Fy = eval{Fy,s)

= A(pby-((x> 0) = Ev(pbs-Ep(pb3.((z >) A (y = k)V
Previous(Ep(b3), (3 = k) V (5 =k)))),x)) ANext(A(b1)))

Step3:s={x=2,y=2,2=0}
F3 = eval{F,,s) = false
Thus the formula is violated on the third state of the trace.
4 1mplementation, Comple‘x'it'yéhd Exp'e'ri.ménts
In this section we describe an implementation of the monitoring framework, discuss its
complexity, and describe briefly an experimentation on a NASA software.

4.1 Implementation

We have implemented this monitoring framework in Java. The implemented system
works in two phases. First, it compiles the specification file to generate a set of Java
classes; a class is generated for each rule and represents the datatype for that rule.
Second, the Java class files are compiled into Java bytecode and then the monitoring
engine runs on a trace; the engine dynamically loads the Java classes for rules at
monitoring time. Currently the implementation does not allow mutually recursive rules,
however, this will be supported for the case where all the rules in the specification are
purely future time.

12

To make the implementation efficient, we use the propositional logic decision
procedure of Hsiang [13]. The procedure reduces a tautological formula to the constant
true, a false formula to the constant false, and all other formulas to canonical forms,
which are an exclusive or () of conjunctions. The procedure is given below using
equations that are shown to be Church-Rosser and terminating modulo associativity and
commutativity. In particular the equations 9 A¢ = ¢ and ¢ @ ¢ = false below ensures
that the size of a formula remains small during monitoring.

true Ad=¢ false A¢ = false 1A (2P ¢3) = (01 Ad2) B (D1 Ad3)
dAG=0¢ faise @9 =0 Vo =(01A92) D01 D%
0@ ¢ = false -9 = true §¢ 01— 92 = true @ 91 (1 A 92)

1= =true®d1 ¢z

In the translational phase, a Java class is generated for each rule in the specification.
The Java class contains a constructor, a value method, an eval method, and an update
method corresponding to the init, value, eval and update functions in the calculus. The
arguments of a transformed rule corresponds to the fields in the class and they are
initialized through the constructor. The choice of generating Java classes for each rule
is for efficiency. In our implementation EAGLE expressions can be any Java expression.
To handle partial evaluation we wrap every Java expression in a Java class. Each
of those classes contains a method isAvailable() that returns true whenever the
Java expression representing that class is fully evaluated and returns false otherwise.
* The class also stores the other different Java expression objects corresponding to the
different variables (formula and state variables) that it uses in its Java expression.
Once all those Java expressions are fully evaluated, the object for the Java expression
evaluates itself and any subsequent call of isAvailable () on this object returns true.

When all the Java classes have been generated, the engine compiles them all,
creates a list of monitors (which are also formulas) and starts their evaluation. During
monitoring the engine takes the states from the trace, one by one, and evaluates the
list of monitors on each to generate another list of formulas that becomes the new
monitors for the next state. If at any point 2 monitor formula becomes false an error
message is generated and that monitor is removed from the list. At the end of a trace the
value of each monitor is calculated and if false, a warning message for the particular
monitor 1s generated. The details of the implementation are beyond the scope of the
paper. However, interested readers can get the tool from the authors.

4.2 Complexity in Special Case

In our work in [4] we showed how EAGLE can perform linear temporal logic (LTL)
monitoring in an efficient way. For an initial formula of size m, we established upper
bounds of O(m?2™logm) and O(m*2%"log?m) for the space and time complexity,
respectively, of single step evaluation over the input trace. This shows that our
implementation’s space and time complexity is exponential in the size of the formula
when we restrict ourselves to LTL with both past and future time temporal operators.
This is independent of the length of the trace for single step evaluation. This makes it
very efficient in terms of space as we do not store the trace either explicitly or implicitly.
However, we found that the efficiency and complexity analysis of the general EAGLE
monitoring algorithm is difficult and can be shown to be dependent on both the length

13

of the trace and the size of initial formula in the worst case. In particular, it can be
shown that in the general case with data-values the size of a formula depends both on
the length of the trace and the size of the initial formula.

4.3 Experiment

The EAGLE logic has been applied in the testing of a planetary rover controller, as
part of an ongoing collaborative effort with other colleagues (see [2]) to create a fully
automated test-case generation and execution environment for this application. The
controller operates a rover, named K9, which essentially is a small car/robot on wheels.
K09 itself is a prototype, and serves to form the basis of experiments with rover missions
on Mars. The controller consists in its current state of 35,000 lines of C++ code and
executes plans given as input. A plan is a tree-like structure of actions and sub-actions.
The leaf-actions control the rover hardware components. Each action has associated
. with it time constraints indicating when it should start and when it should terminate.

The testing environment, named X9 (explorer of K9), contains a test-case generator,
that automatically generates input plans for the controller from a grammar describing
the structure of plans. A model checker extended with symbolic execution is used to
generate the plans [14]. Additionally, for each input plan a set of temporal formulas
is generated, that the execution of that plan should satisfy. The controller is executed
on each generated plan, and the implementation of EAGLE is used to monitor that the
generated execution trace satisfies the formulas generated for that particular plan. The
controller has been hand-instrumented in a few places to generate this trace. As an
example, consider that a plan contains an action move Camera, and that it should execute
for no longer than 10 seconds. Then the following real-time temporal property can be
generated, and monitored during execution:

max CheckCameraMovement () =
Blways(start(“moveCamera’) — EventuallyRel(10, end(“moveCamera”))) .

During the very first test of the controller using EAGLE, approximately 300 test-
cases were generated, and a previously unknown error was detected, demonstrating
that a certain task did not recognize the too early termination of some other task. In
earlier experiments, see [2], just propositional temporal logic without the real-time
constraints was used. For example, the formula that would be monitored would be:
O(start(“moveCamera™) — Qend(“moveCamera”)). The above error was not caught
during the earlier experiments, although others were.

5 Conclusion and Future Work

We have presented the succinct and powerful logic EAGLE, based on recursive
parameterized rule definitions over three primitive temporal operators. We have
described an elegant monitoring algorithm for EAGLE that avoids the storage of
trace. Initial experiments have been successful. Future work includes: optimizing the
current implementation; supporting user-defined surface syntax; associating actions
with formulas; and incorporating automated program instrumentation.

References

1. Ist 2nd and 3rd CAV_Workshops on Runtime Verification (RV’0I - RV’03), volume 55(2),
70(4), 89(2) of ENTCS. Elsevier Science: 2001, 2002, 2003.

14

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

C. Artho, D. Drusinsky, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu, G. Rosu, and
W. Visser. Experiments with Test Case Generation and Runtime Anpalysis. In E. Bérger,
A. Gargantini, and E. Riccobene, editors, Abstract State Machines (ASM’03), LNCS, pages
§7-107. Springer, March 2003.

. H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: An introduction.

Formal Aspects of Computing, 7(5):533-549, 1995.

H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Eagle does Space Efficient LTL Mon-
itoring. Pre-Print CSPP-25, University of Manchester, Department of Computer Science,
October 2003. Download: http://www.cs.man.ac.uk/cspreprints/PrePrints/espp25.pdf.

. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime Verification.

In Proceedings of Fifth International Conference on Verification, Model Checking and
Abstract Interpretation (VMCAI 04) (To appear in LNCS), January 2004. Download:
http://www.cs.man.ac.uk/cspreprints/PrePrints/cspp24.pdf.

. D. Drusinsky. The Temporal Rover and the ATG Rover. In K. Havelund, J. Penix, and

W. Visser, editors, SPIN Model Checking and Software Verification, volume 1885 of LNCS,
pages 323-330. Springer, 2000.

D. Drusinsky. Monitoring Temporal Rules Combined with Time Series. In CAV’03, volume
2725 of LNCS, pages 114-118. Springer-Verlag, 2003.

. B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting Statistics over Runtime

Executions. In Proceedings of Runtime Verification (RV’02) {1], pages 36-55.

B. Finkbeiner and H. Sipma. Checking Finite Traces using Alternating Automata. In
Proceedings of Runtime Verification (RV'01) [1], pages 44-60.

D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal Properties
on Running Programs. In Proceedings, International Conference on Automated Software
Engineering (ASE’01), pages 412416, ENTCS, 2001. Coronado Island, California.

K. Havelund and G. Rogu. Monitoring Programs using Rewriting. In Proceedings,
International Conference on Automated Software Engineering (ASE’01), pages 135-143.
Institute of Electrical and Electronics Engineers, 2001. Coronado Island, California.

K. Havelund and G. Rosu. Synthesizing Monitors for Safety Properties. In Tools and
Algorithms for Construction and Analysis of Systems (TACAS'02), volume 2280 of Lecture
Notes in Computer Science, pages 342-356. Springer, 2002.

Jieh Hsiang. Refutational Theorem Proving using Term Rewriting Systems. Artificial
Intelligence, 25:255-300, 1985.

S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized Symbolic Execution for Model
Checking and Testing. In Proceedings of TACAS 2003. Warsaw, Poland., April 2003.

D. Kortenkamp, T. Milam, R. Simmons, and J. Fernandez. Collecting and Analyzing Data
from Distributed Control Programs. In Proceedings of RV°0! (1], pages 133-151.

Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255-299, 1990. '

K. Jelling Kristoffersen, C. Pedersen, and H. R. Andersen. Runtime Verification of
Timed LTL using Disjunctive Normalized Equation Systems. In Proceedings of Runtime
Verification (RV'03) [1], pages 146-161. .

I Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan. Runtime Assurance Based
on Formal Specifications. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications, 1999.

A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE Symposium
on Foundations of Computer Science, pages 4677, 1977.

K. Sen and G. Rogu. Generating Optimal Monitors for Extended Regular Expressions. In
Proceedings of the 3rd Workshop on Runtime Verification (RV’03) [1], pages 162—181.

15

